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Background



RSA Cryptosystem  cd=1 mod ¢(N) ¢WN)=(p—1)g-1)

Public key: (N, e) =

® O]

e

e

Secret Key: (¢p(N), d) Eva

Eve wants to get the SECRET KEY!!!



Lucky Eva got enough MSBs of p...

1
known MSBs of p unknown bits p< N 4

Wi,

#
p: %n bits

Now he just needs to solve a linear polynomial equation:

fix) =x+ C=0 mod p with a small root x, = p < N7

How to solve polynomials equations with small roots?




Coppersmith’s method



Coppersmith’s method

Let V{,V,,...,V, € R", the lattice &£ is

n

L = VElm\V:Za-V-a-GZ

1710
=1

Given bounds X, ---, X, and fi, ---,f, € Z|xy, ..., X;] and modulus M, the goal is to find

the small root u = (uy, ..., u;) with \uj\ < X, suchthat f(u) =0 mod M, 1 <i<n.
T - = fh. L W /S V(e G IR
1. Generate shift-polynomials g; ..., ; ...;=/"...-f;-x'-....-xt- M7
have the root u module M"™, for some m.

2. Use the coefficient vector of gj; ... ; ..:1(x X}, ..., 5 X}) to construct £

3. Use Lattice Reduction (LLL) to find shorter vectors



Crucial Condition: & MUST satisfied det(&) < M™4m(Z)

Example: f(x) =x+ C =0 mod p with a small root x; = p < N%

XO Xl x2 .X3 .X4 .XS X6 x7 X8
H N4 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 “
x | N3X 0 0 0 0 0 0 0 > —_—
* * N2X? 0 0 0 0 0 0 dlm(g) = m + O(m)
* * * NX3| 0 0 0 0 0
* * * * X4 0 0 0 0 | ) 2 1.2 2
* * * * x | X°| 0 0 0 det(g) — Ngm O(m )ij O(m )
" * K * * x | X° | 0 0
* * * * * * x | X7 0
* * * * * * * x | X8

Lower triangular

X < N7 — det(¥) < p"4mZ) 5 fcan be solved with Coppersmith’s method.



Using Coppersmith’s method, compute dim(%#’) and det(£):

m m
Manual Calculation such as calculating Z Z (i — min(s,i))? NO!
k=0 i=k

Theorem: dim(Z’) and det(Z) are polynomials in .

Now,

Manual Calculation =g Lagrange Interpolation



Automated Coppersmith’s method

At Asiacrypt'23, Meers and Nowakowski introduced a new automated method called
Automated Coppersmith.

O First determine the elements of the diagonal of the matrix (denote by ) of the lattice
< and then select a suitable subset & of shift-polynomials to construct the lattice &£

A l l —(f et
, el M) ) e
LM(f)i - ... - LM(f,)’

, Shift-polynomials

» An element of ./ is related to a unique element of &

« Given a single shift-polynomial, a locally optimal & can be constructed automatically

O Need to ensure:
[ x....x)- [ ILcE | < mm-pia,
AEM

Coefficient of Leading monomial
of the polynomial in &

Leading monomial of the polynomial in #




Automated Coppersmith’s method

Use polynomial interpolation to derive bounds X, ---, X; automatically

o A sequence of sets # C M, C -+, for any fixed A ,and m, :=1-n—a
corresponding optimal set of shift-polynomials & .

M, = U supp{f”' - ... - fir}, for i € N. (monomials set)
0<j,..vj, <i
o | 4. ...x0- ] ILC&F 1D < mom=hla,
AEM AEM

M(mi_k)‘ﬂi‘ — Mp/%(mi),

_polynom!al Hﬂeﬂ' AXq, ... X)) = Xflvl(mi) Co lek(m,-)
Interpolation l

I — AfP7 (") [(heuristic
[T, | LC(F D] =M (heuristic)
P, Py, -, P, szl. are polynomials of degree k + 1.

= XYL X% < MOE
1 k —



Our Results



For linear equations f,, -+, f, € Z|x, ..., x|, deg(f, )=1.

we want to solve f, = 0 mod M, *M,, 1 <i < n.

where M, is an unknown , M, is known, M, is a known multiple of M,

fiEOmodﬂl*Mz:}fiEOmodMl*Mz,lgign?



Our results

« Better monomials set ( better bounds on X, --+, X})

Non-Homogenous linear equations: there exists i, such that f; (0) # 0
M= (A€ supp{f - ... filji+ ... +j, <n-i)
Homogenous linear equations:
Mi= (A2 € suppl{fit- ... fi) i+ ...+ ), =n-i)
* |Introduce a new parameter f to consider shift polynomials

LM(f,) /1 oGy My i Syt e
)le... )

 Need to ensure: H Xy, .. X)) - H ILC(F{A])| < Mm—Rli
AEM AEM

» Heuristic: (proven to be true ) [] ILc& an| = /™" . (.
AEM

Homogenous & n = 1 G-EIFP ?



Implicit Factorization Problem



IFP (MSBs case)

W//%p 1%/%19 ) Ny =pig;and N, = pyq,
1 2

P, share the same MSBs with p,

Ny + (p, — P19 = P91 =0 mod p,

SOIVingf(xl,Xz) — X1X2 + Nl — O IIlOd p2



IFP (LSBs case) [ 7/ i)

P1 P2

IFP (Middle case) 7z, |
P1 P2

IFP (Generalized case) [~ o | -

— shared bits: M — — shared bits: M —

(a) p1 (b) p2



EIFP (MSBs case) N, = p,q; and N, = p»q,

™~

/A ]
P1 P2

p, sharethe same MSBs with p, =% q,p, share the same MSBs with a,p,

How about EIFP with Generalized case? G-EIFP!

a,p, share some continuous bits with a,p,, which can be located in different positions.

ad1P1 dr P>

110---001 X X4 110---001

— shared bits: M — — shared bits: M —



Definition: Given two n-bit RSA moduli N, = p,g,and N, = p,qg,, where
g, and g, are an-bit, suppose that there exist two positive integers a, and a,
with a;, a, < 2" such that a,;p, and a,p, share yn bits, where the shared
bits may be located 1n different positions ot a;p, and a,p, . The Generalized
Extended Implicit Factorization Problem (G-EIFP) asks to factor /N, and V,.



suppose that a,p, shares yn-bits from the f;n bit to (f;, + y)n-th bit, and
a, p, shares bits from f,n-th bit to (f/, + y)n-th bit, where , and f, are

known with f; < p,.

d1P1

alp]_ — X1 + 2,81’TLR —|— ."E22('Bl+’y)n, — shared bits: M —

A2P2 = T3 T 272" R x42(52+7)”, “P>
f(xa y9 Z) — X + Cly + NZZ W|th d =— 2(ﬁ2+}/)n, e

where (X, Yo, Zg) = (Z(ﬁz_ﬁl)”xlqz — X3¢, X2(r — X4, az) is a solution of the

modular equation f(x,y,z) =0 (mod 2>7F1p ).



Since gcd(xy, Yo, NV,) = q,, introduce w as a new variable and denote

fx,v,z,w) =x+ay+ wz,

where(Xy, Yo, 20, W) = (Z(ﬂz_ﬁl)”xl — X3, Xy — Xy, Oy, pz) is a solution of the
modular equation f(x,y,z,w) =0 (mod 2¥>"P)p).

We want to solve f = 0 mod 2»>"#V"p, , where p, is an unknown divisor of /V,.

» Choose A ;.= {A|1E supp{fjl},h = ;]
A
LM(f)"

m;—1

« Consider shift polynomials: fh e NI Qo)

» Choose # ;: introduce s that will be optimized later to reduce determinant. (Wyg, = N>, v = @5)

m;,—1

N;min{S,il}vS 'fil . NFaX{t—ll’O}(Z(ﬁz_ﬁl)H)

LM(f)n

o New A; = {x%1y%g Pyt Mniasshy,s—mniasst | o 4 o + o, = m;} .



M(mi_k)lﬂil — Mp/%(mi)

H ILC(F [A]) | = Mff’fl(t’mi) . P72 (proven to be true)

2
AEM ;
[T A0 o X A V) = XD P ypmsm) . ymism)
AEM,

Where M, = N,, M, = 227" W is an upper bound of N,, and V is an upper bound of ¢,.

(s,m2) 100, 0)[(0, DT, D0, 2)[(L, 2)[(Z, 2100, 3)|{, 32, 3)[(3, 3) Lagrange InterpOIathn p, = m® + o (m?),

pw(s,m;)| O 1 0 4 1 0 10 0 1

’lh\.
—

po(s;mi)| O | 0 | 2 | 0 | 3 | 8 | 0 | 4 | 11 | 20 . 2= (m?),
! 23 3 , S — mT2

dim(&’) and det(&)

use Grobner basis method or resultant computations to find (xy, Yy, 29, Wg, Vo) = (2(ﬁ2_ﬂ1)”x1 — X3, X5 — Xy, Gy, Do, qz).



n:log,N, a:log,q, o:log,a, y:

shared bits

n
Theorem: G-EIFP(n,a,7,d) can be solved in polynomial time when

v > da (1 — Va) + 26,

provided that o + v < 1.

n oén an PBn Bin Ban yn m dim(L) Time for LLL(s) Time for Grobner Basis(s)

200 10 20 40 20 30 140 4 15 0.3638 0.0094
400 20 40 80 40 60 280 6 28 1.0674 2.4525
500 25 50 100 50 75 350 6 28 1.3903 3.3241
1000 50 100 200 100 150 700 8 45 40.0927 1184.4979

Table 1: Some experimental results for G-EIFP.



Thanks for listening!

Code: https://github.com/fffmath/CombeelFP



https://github.com/fffmath/CombeeIFP

